A Numerical Method for Solving Time-Invariant System by Generalized Inverse Vandermonde Matrix
نویسندگان
چکیده
A simple numerical algorithm based on the generalized Inverse Vandermore matrix for evaluation of time response to a time-invariant system is proposed. The system is assumed to be governed by a high order linear differential equation with constant coefficients. The technique involves determination of the partial-fraction expansion of rational functions. Only synthetic division and longhand division are required, which makes the process very suitable for computer programming. Meanwhile, because the solution is directly related to the systemís initial conditions, the proposed approach only requires computation of the inverse generalized Vandermonde matrix.
منابع مشابه
An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملA numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملThe Accurate and Efficient Solution of a Totally Positive Generalized Vandermonde Linear System
Vandermonde, Cauchy, and Cauchy–Vandermonde totally positive linear systems can be solved extremely accurately in O(n2) time using Björck–Pereyra-type methods. We prove that Björck–Pereyra-type methods exist not only for the above linear systems but also for any totally positive linear system as long as the initial minors (i.e., contiguous minors that include the first row or column) can be com...
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 15 شماره
صفحات -
تاریخ انتشار 1999